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Abstract
Accurate slope stability prediction is of utmost importance to reduce disastrous effects of 
slope failures and landslides. However, conventional methods of slope stability analysis 
are complex and challenging, and more importantly, use of these methods in a wide-area 
slope stability assessment requires a large number of soil property and field investigation 
data. These complexities and challenges often demand some simplified statistical slope 
stability analysis models such as by using machine learning (ML) techniques. So, in this 
research, we develop slope stability prediction models using multiple linear regression 
(MLR) and artificial neural network (ANN) and classify the slopes as safe or unsafe us-
ing random forest (RF) and support vector machine (SVM) methods. For this purpose, 
a dataset of 4,208 slope cases was created using limit equilibrium-based Slide software. 
The effectiveness of each model was then evaluated using statistical metrics and validated 
through roadside slope cases in Nepal, India, Canada, and the UK. In this study, Spencer’s 
method-based ANN model was found to have demonstrated the highest reliability. The 
findings of this work may contribute to simplified and better decision-making process in 
slope stability assessment, slope safety enhancement, and sustainability improvement in 
engineering projects involving soil slopes.

Keywords Slope stability · Machine learning · Stability prediction models · FOS · 
ANN · MLR
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1 Introduction

Slope geometry, properties of the slope soil and rock masses, slope hydrological environ-
ment, existing reinforcing elements, applied loads, and seismicity of the area are the key ele-
ments that govern the stability of a soil or rock slope (Zou et al. 2021; Nasseri et al. 2022). 
Slope failure events are often disastrous and may lead to fatal loss, destruction of properties 
and infrastructures, and great economic impact (Sim et al. 2022; KC et al. 2024). Rapid 
growth in development and construction activities especially in developing countries with 
mountainous terrains demands some accurate but simple methods to predict the stability of 
slopes (He et al. 2003).

The traditional slope stability analysis methods such as Bishop (1955), remains one of 
the best methods for soil stability analysis due to its balance of computational simplicity 
and accuracy. It effectively estimates the factor of safety for circular slip surfaces by sim-
plifying complex limited equilibrium equation, making it widely acceptable and reliable in 
geotechnical applications. While historically significant, classical slope stability methods 
are time-consuming, labour-intensive for wide-area assessment, requiring extensive soil 
property data and field investigations (Choobbasti et al. 2009). Owing to these drawbacks, 
addressing the landslide and slope stability issues more effectively requires expertise in 
several fields, such as geology, hydrology, seismology, geotechnical exploration, and geo-
technical engineering, along with the proficiency in computerized analytical methods and 
feasible solutions (Aryal and Acharya 2022; Choobbasti et al. 2009). So, developing coun-
tries with young geology, steep terrains, and intense rainfall in a short period, such as India, 
the Philippines, Indonesia, Nepal, etc. entail affordable and straightforward models to assess 
the stability of soil slopes.

Machine Learning (ML) have the potential to overcome the limits of conventional slope 
stability analysis techniques. One key advantage is their ability to incorporate numerous 
influencing elements, capture complex interactions within the data, and efficiently handle 
large and heterogeneous datasets (Aminpour et al. 2022; Liu et al. 2021; Qi and Tang 2018). 
Furthermore, ML models offer the potential for automation and scalability, allowing for 
rapid analysis of slope stability across large spatial scales and diverse geological settings 
(Bansal and Sarkar 2024). Favourable results have been observed in applying ML for slope 
stability analysis providing robust, simplified and accurate predictions, as documented by 
Das et al. (2011) and Koopialipoor et al. (2019). Melchiorre et al. (2008), Pradhan et al. 
(2010), and Wang et al. (2006) employed ANNs to evaluate and predict the deformation of 
landslides in the regional areas of Italy, Malaysia, and Japan, respectively. Lin et al. (2021) 
proposed a model using 11 different ML algorithms and a total dataset of 396 slope cases to 
systematically compare the effectiveness of each algorithm. They found that support vector 
machine (SVM), gradient boosting machine (GBM), and bragging were the most suitable 
algorithms for slope stability prediction. Chakraborty and Goswami (2017) utilized 200 
artificial slopes to develop prediction models based on MLR and ANN, demonstrating their 
effectiveness with high correlation values and low error metrics. Bui et al. (2019) found that 
the multi-layer perceptron (MLP) outperformed other machine learning models in predict-
ing slope stability, based on a dataset of 630 stages derived from simple layer cohesive 
slope. Ray et al. (2020) developed ANN1 and ANN2 models using 400 residual soil slopes 
to estimate the FOS in the Siwalik slopes of the Himalayas. Karir et al. (2022) use various 
machine learning models to predict the factor of safety for natural residual soil slopes and 
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man-made mine dump slopes and found tree-based algorithms, particularly extreme gradi-
ent boost, to be superior in performance compared to linear models. Demir and Sahin (2023) 
evaluated five machine learning algorithms for predicting slope stability and discovered 
winsorizing data improves model performance, with random forest (RF) performing best. 
Various machine learning algorithms were explored by Kurnaz et al. (2024) for slope sta-
bility analysis and found that the weighted ensemble learning algorithm in the AutoGluon 
package yields the most accurate results.

Despite a few studies on use of ML models to analyse slope stability using smaller datas-
ets, a comprehensive evaluation utilizing state-of-the-art ML techniques and extensive data-
sets has yet to be conducted. For ML models to be successful during the learning, testing, 
and validation procedures, trustworthy and sizable datasets must be available (Dashbold et 
al. 2023; Pyakurel et al. 2023; Ye et al. 2022). The main contribution of this study lies in 
the development and comprehensive evaluation of a framework for forecasting the factor of 
safety (FOS) of slopes using state-of-the- art ML paradigms, specifically MLR, ANN, RF, 
and SVM, on significantly larger dataset than previously utilized. By generating a dataset 
of 4208 slope cases using limit equilibrium-based Slide software for sensitivity analysis, 
regression, and classification model development, this study provides a robust method for 
slope stability prediction. Accurate estimates of the FOS constitute a significant criterion for 
assessing slope stability, allowing geologists and geotechnical engineers to make informed 
decisions throughout a project’s planning and design phases. This can be helpful in deci-
sion-making processes and in improving the safety and sustainability of engineering proj-
ects in slope-prone areas.

2 Materials and methods

2.1 Data and slope models

The stability of slopes is governed by geometric attributes of the slope (i.e., inclination and 
height) and material properties (i.e., cohesion, angle of internal friction, pore water pres-
sure, and unit weight of soil). These parameters were used to estimate the FOS of the slope. 
When the FOS > 1, the slope was classified as stable, and when the FOS ≤ 1, the slope was 
classified as unstable. The purpose of this study is to explore the performance of various 
artificial intelligence-based algorithms in evaluating the stability of slopes, both regression 
and classification models were used to predict the FOS and slope classification as model 
outputs. The performance of each model was evaluated by accuracy score and coefficient 
of determination.

To accurately predict the FOS, the dataset must be sufficient in number to represent 
the phenomenon being predicted effectively. The model must train with known datasets 
covering a wide range of inputs to predict the intricate relationship between dependent and 
independent variables. The homogenous slope with the variation of these input parameters 
was modelled to obtain a FOS for the five different limit equilibrium methods, i.e., Bishop 
(1955), Fellenius (1936), Janbu (1955), Morgenstern and Price (1965), and Spencer (1967).

Limit equilibrium-based Slide software was used to evaluate the FOS of the slope from 
six different parameters, namely, slope angle (θ), height (H), cohesion (c), angle of internal 
friction (ϕ), pore pressure coefficient (ru), and unit weight of soil material (γ). A total of 
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4,208 parametric scenarios were gathered to create the datasets based on different ranges 
of the parameters of the slopes as shown in Table 1. The obtained FOS for different para-
metric features was used to prepare the comprehensive database for further study using ML 
algorithms. All input and outcome variables utilized in this study are also statistically sum-
marized in Table 1.

The parameter ranges for our landslide prediction model were determined based on a 
comprehensive review of the literature. Previous studies (Abbas 2014; Chen et al. 2021) 
have established the importance of parameters such as slope angle, slope height, soil type, 
unit weight and cohesion in slope stability. The height of the slope was chosen within the 
range of 10 m to 35 m (Table 1) to provide sufficient stability for small-scale slope instabil-
ity occurring alongside roads. Large landslides that can cause more extensive damage can 
be analysed on an individual basis. The pore pressure coefficient ranges from 0 to 1, where 
0 indicates a completely dry condition, and 1 represents a saturated condition. Slope inclina-
tions were adopted to range from 20º to 45º, as in the studies done by Juang et al. (1992), 
Kasa (1992), and Ray et al. (2020) in which the landslides appearing in the area occurred 
at locations with slopes exceeding 20º. For the soil modelling, the cohesion was adopted to 
vary from 0 kPa to 20 kPa, as adopted by Paudyal et al. (2023). In terms of friction angle 
(15° – 35°) and unit weight (15–25 kN/m3), the ranges of value considered in the study cov-
ers a wide range of soils.

Landslides are complex phenomena involving physical interplay of several parameters. 
For example, increased pore pressure (higher ru ) reduces effective stress in the soil, decreas-
ing friction and cohesion, and thus lowering slope stability (Lehtonen 2015; Thakur et al. 
2021). The exact relationship between pore pressure and friction or cohesion is influenced 
by factors like soil type, pore structure, and groundwater, complicating precise determina-
tion (Acharya et al. 2023; Subedi et al. 2021). However, this paper does not detail the role of 
each parameter in slope stability or the interactions between these parameters.

The total number of datasets were divided into training and testing subsets, each of which 
was 80% and 20% of the total datasets, respectively. In total, the training and testing subsets 
were 3,366 and 842, respectively. The slopes with FOS were classified into two classes, safe 
slope, and unsafe slope, which are assigned numerical encoding as 1 and 0, respectively. 
Slope cases with FOS value greater than two and less than 0.2 are trimmed off so that the 
ML prediction model can obtain enough data for boundary classification. The values below 
0.2 indicate extreme instability, often outliers, while values above 2 represent very stable 
conditions with negligible failure risk. Excluding these extremes focuses the model on rel-

Table 1 Statistics of variables used in the analysis
Property Variables

Slope 
Height,
H (m)

Slope 
Inclination,
θ (°)

Cohesion, 
c (kPa)

Friction 
Angle,
ϕ (°)

Unit weight,
γ (kN/m3)

Pore pres-
sure coef-
ficient, ru

Fac-
tor of 
safety 
(FOS)

Category Input Input Input Input Input Input Output
Count 4,208 4,208 4,208 4,208 4,208 4,208 4,208
Mean 22.23 35.43 10.06 25 20 0.49 0.67
Min 10 20 0 15 15 0 0.2
Max 35 45 20 35 25 1 1.95
Std. 
Deviation

9.27 7.27 2.91 3.01 1.5 0.12 0.23
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evant stability ranges, improving the model training and enhancing prediction accuracy. The 
training dataset for our landslide prediction model has an average Factor of Safety (FOS) of 
0.67. This average value was chosen to avoid bias towards either stable or unstable slopes, 
even though an FOS of 0.67 indicates instability. Different FOS assumptions could lead to 
overprediction (with a very low FOS) or underprediction (with a very high FOS) of land-
slide occurrences. The FOS of 0.67 reflects the dataset characteristics, as we include data for 
landslide events where the FOS is less than 1. By adhering to these dataset characteristics, 
we enhance the model’s robustness and applicability in real-world scenarios where the dis-
tribution of slope stability may vary from our training set. On the other hand, determining 
the best architecture of ML was also challenging in developing the best-performing model. 
The model development steps are described with the help of a flowchart, as mentioned in 
Fig. 1.

2.2 Machine learning models

Machine learning (ML) models attempt to represent slopes’ complex linkages and nonlinear 
behaviour by combining various geometric and soil properties. The factor of safety (FOS) 
of slopes, which stands for the margin of safety against failure, and input variables such 
as geometry, soil parameters, and pore water pressure can be captured reasonably by ML 
algorithms.

Table 2 shows some of the studies conducted in the past to study slope stability using 
different ML methods. In this study, two different sets of supervised machine-learning algo-
rithms are used. Based on input variables, including c, ϕ, ru, and γ, supervised regression 
models were used to anticipate the FOS. Meanwhile, supervised classification models were 
utilized to categorize slopes as either safe or unsafe.

2.2.1 Artificial neural network (ANN)

Artificial neural network (ANN) is a computational model that attempts to duplicate the 
brain’s core function by functioning similarly to the brain’s neurons. It is composed of 

Fig. 1 Flow chart for development of machine learning model
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many interconnection processing units (neurons), that works together to solve specific prob-
lems. Haykin (1999) described ANNs as machines designed to model the process of human 
mind during particular task. When the connections within the underlying data are hidden or 
obscure, ANNs prove to be a powerful modelling tool.

ANN generally contains three primary layers: the input, hidden, and output (Cho 2009). 
Multilayer neural networks are more reliable than single-layer neural networks for solv-
ing nonlinearly separable issues such as slope stability analysis because of their ability to 
combine linear transformations and sigmoidal functions (Chakraborty and Goswami 2017; 
Zare et al. 2013). Multilayer perception (MLP) is a simple type of ANN can incorporate the 
non-linear relationship between sets of input features and target labels.

However, there is not much benefit to using several hidden layers. Yilmaz (2010) 
observed that if there are enough nodes in a single hidden layer of an MLP, it can effectively 
approximate any function with reasonable accuracy. When the optimal quantity of nodes in 
a single hidden layer is substantial, employing two hidden layers can be reasonable. Once 
the network has learned, it can apply its acquired understanding to anticipate the actual 
output with a respectable degree of accuracy.

The optimum performing neural network can be obtained after experimenting with dif-
ferent hidden layers, activation functions, optimizers, and corresponding neurons within 
each layer. On both the training and testing datasets, a number of trials were performed to 
determine the minimum mean absolute error (MAE) and the maximum coefficient of deter-
mination (R2). The hidden layer with ten neurons was chosen as a best model, preventing 
further complexity of architectural design. The best-performing model employs the Adam 
optimizer with a learning rate of 0.01 and sigmoid function as the activation function. The 
quantity of input and output variables determines the maximum number of neurons possible 
on the input and output layers. Specifically, the input layer comprises six neurons, while the 

Table 2 Summary of previous studises on ML-based slope stability prediction
Source Parameters Data size Model Used
Samui (2008) c, H, θ, γ, ϕ, ru 46 SVM
Gelisli et al. (2015) c, H, θ, γ, ϕ, WT 100 ANN
Chakraborty and Goswami 
(2017)

c, H, γ, ϕ, β, ru 200 MLR and ANN

Qi and Tang (2018) c, H, θ, γ, ϕ, ru, 148 RF, GBM, SVM, ANN, LR, DT
Bui et al. (2019) c, θ, b/B, w 630 GPR, MLR, MLP, SLR, SVM
Ray et al. (2020) Cs, Cj,Cr, H, ϕs, ϕr, ϕj,Er, 

Es, α, D
400 ANN (both ANN1 and ANN2)

Lin et al. (2021) c, H, γ, β, ϕ, ru, 396 LR, BR, ENR, KNN, SVM, 
DT, RF, Ada boost, GBM, Bag-
ging, Extra trees

Bharati et al. (2022) H, θ, h’ 216 ANN and MLR
where θ: Slope angle, H: Slope height, c: Cohesion, ϕ: Friction angle, Es: Young’s modulus, h: Soil depth, 
b/B: Slope setback distance, w: Surcharge, WT: Height of water table, h’: Collar height, Cs: Shear strength 
of residual soil, ϕs: friction angle of residual soil mass, Er: Young’s Modulus of Weathered rock mass, Cr: 
Cohesion of weathered rock mass, ϕr: angle of internal friction of Weathered rock mass, Cj: cohesion of 
soil rock joint interface and ϕj: angle of internal friction of rock joint interface, α: average slope angle 
(α), D: residual soil depth, GBM: Gradient boosting Machine, LR: Logistic Regression, DT: Decision 
Tree, BR: Bayesian Ridge, ENR: Elastic net regression, KNN: K nearest neighbours, Ada boost: Adaptive 
boosting Machine, GPR: Gaussian Processes Regression, MLP: Multi-Layer Perceptron, SLR: Simple 
Linear Regression
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output layer comprises only one neuron. Architecture of the ideal model for the ANN regres-
sion approach is shown in Fig. 2.

2.2.2 Multiple linear regression (MLR)

Multiple linear regression (MLR) is a vital regression algorithm that models the linear rela-
tionship between several independent variable and a single dependent continuous variable. 
This method is frequently employed in the prediction of landslides and slope failures (Prad-
han et al. 2010). By using more than one predictor variable to obtain a criterion value, MLR 
is an improvement over simple linear regression. The general MLR is given by Eq. (1):

 Y = a+b1×x1+b2×x2+b3×xn+ . . .+bn×xn+ε  (1)

where Y is a dependent variable, x1, x2, x3, …, xn are independent variables, b1, b2, b3, …, bn 
are regression coefficients, a is constant, and ℇ is an error.

Fig. 2 Neural network architecture for FOS prediction
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2.2.3 Random forest (RF)

Random forest (RF) is a popular machine learning algorithm for classification and regres-
sion that operates by many decision trees at training time. Instead of depending on a single 
decision tree, the RF estimates from each tree based on most predictions and predicts the 
final output. It utilizes combined decision trees from weak learner decision trees by employ-
ing resampled datasets, substations, and randomly changed predictors (Breiman 2001). A 
higher number of trees in the forest increases accuracy and reduces the issue of overfitting. 
Breiman (2001) statistical theory is the foundation of the RF algorithm, which is combina-
tion classification intelligence. It can mine data effectively and anticipate outcomes with 
great precision (Huang et al. 2022; Lin et al. 2018).

An RF eliminates the drawbacks of a decision tree algorithm. It decreases the overfitting 
of datasets and increases precision. The likelihood of overfitting can be decreased by the 
number of random trees because each tree acts as a totally distinct random circumstance 
(Wongvibulsin et al. 2020).

2.2.4 Support vector machine (SVM)

Support Vector Machine (SVM) is one of the widely used supervised learning algorithms 
employed for classification and regression problems. The SVM identifies a hyperplane 
within an N-dimensional space (N is the number of features) that effectively separates the 
data points into distinct classes. Due to their remarkable performance in handling high-
dimensional and non-separable datasets, SVMs have shown to be a dependable solution for 
many classification problems (Kavzoglu and Colkesen 2009).

Many possible hyperplanes could be chosen to distinguish two data points. Our aim is 
finding a plane with maximum margin, i.e., the greatest distance between data points of two 
classes. By maximizing the margin distance, the classification process is strengthened and 
confidence in classifying future data can be enhanced. The system output is generated by 
grouping and classifying the relationships among these predictors (Gleason and Im 2012). 
The fundamental principle of SVM is based on the transition from nonlinear to future linear 
spaces (Cherkassky and Mulier 2007).

Based on statistical learning theory, SVM enhances the generalization capacity of a learn-
ing machine by reducing structural risk, experience risk, and confidence range, enabling the 
model to be more accurate even when working with fewer samples.

3 Results

3.1 Sensitivity analysis

The sensitivity of the material properties to the FOS for a slope with a height of 35 m and an 
angle of slope inclination of 45° is presented in Fig. 3. In the figure, the x-axis represents the 
FOS, while the y-axis represents the percentage of range (%), which refers to the normal-
ized variation of a material property from its minimum to maximum value, ranging from 0 
to 100%. Sensitivity analysis helps to understand the influence of input parameters on the 
stability of the slope.
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Sensitivity analysis was performed on combination of slope inclination and height, as 
shown in Table 3. For the given slope angle (θ) and slope height (H), the result of sensitivity 
analysis was further used in the dataset development of this work.

3.2 Regression models

The Pearson correlation coefficient (r) between two variables, X and Y, can be estimated 
as Eq. (2). The entire dataset was examined to detect correlated features and to remove 
the redundant columns from the predicted models. According to the heatmap, there were 
no significant positive or negative correlations among the input variables. There were no 
redundant variables among the data features, making these input parameters suitable for use 
as features in prediction models.

 

r =

∑ (
Xi−

−
X

) (
Yi−

−
Y

)

√
∑ (

Xi−
−
X

)2∑ (
Yi−

−
Y

)2  (2)

A FOS value for the training dataset is obtained using Bishop, Fellenius, Janbu, Morgen-
stern and Price, and Spencer methods to create the datasets. For both MLR and ANN, five 

Slope height, H (m) Slope angle, θ (°)
10 25, 30, 35, 40
15 20, 30, 40, 45
25 25, 30, 35, 40, 45
30 30, 35, 40, 45
35 30, 35, 40, 45

Table 3 Combination of slope 
angle (θ) and slope height (H) 
used for sensitivity analysis

 

Fig. 3 Sensitivity plot of the 
material for cohesion, angle of 
friction, unit weight, and pore 
pressure coefficient

 

1 3



Natural Hazards

Table 5 Prediction equations based on the MLR model for estimation of FOS for given input soil parameters
Method Equation
Morgenstern and Price (1965) FOS =1.858− 0.014×H+

0.026× c + 0.014× φ−
0.022× θ − 0.022× θ−
1.072× ru − 0.013× γ

Bishop (1955) FOS =1.924− 0.014×H+

0.026× c + 0.013× φ−
0.023× θ − 1.151× ru−
0.013× γ

Janbu (1955) FOS =1.838− 0.013×H+

0.023× c + 0.012× φ−
0.022× θ − 1.12× ru−
0.012× γ

Fellenius (1936) FOS =1.530− 0.013×H+

0.024× c + 0.019× φ−
0.017× θ − 0.885× ru−
0.013× γ

Spencer (1967) FOS =1.851− 0.014×H+

0.026× c + 0.014× φ−
0.022× θ − 1.072× ru−
0.013× γ

Study Parameters Morgenstern 
and Price 
(1965)

Bishop 
(1955)

Janbu 
(1955)

Fel-
lenius 
(1936)

Spen-
cer 
(1967)

Multiple R 0.970 0.974 0.972 0.962 0.970
R2 0.942 0.948 0.946 0.925 0.942
Adjusted R2 0.942 0.948 0.945 0.925 0.942
Standard error 0.066 0.064 0.062 0.065 0.065
Number of 
observations

4208 4208 4208 4208 4208

Intercept 1.858 1.924 1.838 1.530 1.851
H -0.014 -0.014 -0.013 -0.013 -0.014
c 0.026 0.026 0.023 0.024 0.026
ϕ 0.014 0.013 0.012 0.019 0.014
θ -0.022 -0.023 -0.022 -0.017 -0.022
ru -1.072 -1.151 -1.120 -0.885 -1.070
γ -0.013 -0.013 -0.012 -0.012 -0.013

Table 4 Summary output of 
MLR analysis for different slope 
stability methods
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separate regression models were generated. The MLR model gives a predictive equation 
for the determining FOS, whereas the ANN model provides weights and biases for neural 
network, which were used for forecasting FOS based on input parameters.

3.2.1 Multiple linear regression (MLR)

A summary of the MLR analysis and corresponding statistics is given in Table 4. Table 5 
demonstrates the prediction equation for each approach based on the MLR model.

The result of each input parameter with FOS predicted using MLR is shown in Fig. 4. 
Each value of the input features was taken one at a time, while other features remained at 

Fig. 4 Variation in FOS with input features as predicted from MLR: (a) slope (θ), (b) pore pressure coef-
ficient (ru), (c) angle of internal friction (ϕ), (d) cohesion (c), (e) unit weight (γ), and (f) height (H)
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the mean value of the overall instances in the datasets, as presented in Table 1. The FOS 
value increases with increasing values of ϕ and c and decreases with increasing values of 
θ, ru, γ, and H.

3.2.2 Artificial neural network model (ANN)

The loss curve with epochs for each method is presented in Fig. 5. Among the models, 
the Spencer method shows superior performance in both the training (R2 = 0.97) and test-
ing (R2 = 0.97) datasets, as shown in Table 6. Hence, the predicted result from the Spencer 
method aligns with the target output. The performance of all the other models is also excel-
lent, as the value of R2 is very high, close to 1.

ANN model for different methods Value of R2

Training data Testing data
Fellenius (1936) 0.96 0.97
Bishop (1955) 0.95 0.96
Janbu (1955) 0.96 0.96
Spencer (1967) 0.97 0.97
Morgenstern and Price (1965) 0.95 0.95

Table 6 Comparison of predic-
tion performance in the ANN 
model for different stability 
analysis methods

 

Fig. 5 Curve showing the loss between target and predicted outputs as a function of epochs for (a) Fel-
lenius, (b) Bishop, (c) Janbu, and (d) Spencer methods

 

1 3



Natural Hazards

All artificial neural network regression models for the Bishop, Fellenius, Janbu, Morgen-
stern and Price, and Spencer methods are a good fit for the prediction of the FOS for given 
input features θ, H, ru, c, ϕ, and γ, with the coefficient of determination of each being greater 
than 0.95.

3.2.3 Comparison of MLR and ANN regression models

Figure 6 demonstrates the bar plot comparing the R2 for the ANN and MLR. The forecast 
performance of the ANN model surpasses that of the MLR models for each method. The 
prediction performance of the ANN model can be improved, increasing the model’s com-
plexity. MLR is a linear predictor, whereas ANN is a nonlinear predictor of the relationship 
between features and labels. The relation between FOS and input features is nonlinear and 
complex, and ANN models can be used for better prediction over MLR.

3.3 Classification models

In the model, FOS has two values, 0 and 1, which determine slope stability. A value of 0 in 
the model indicates that the unstable slope has a FOS less than 1, while a value of 1 indicates 
that the stable slope has a FOS greater than 1. The results of the classification models are 
discussed in terms of their classification accuracy, confusion matrix, classification report, 
and ROC curve. A comparison of each model in terms of prediction performance is also 
made.

3.3.1 Support vector machine (SVM)

The accuracy of the support vector classification model on the training dataset is 0.993. This 
means that the SVM model is good enough to classify slope stability problems. The SVM 
model for training data correctly predicts 99 out of 100 cases.

Fig. 6 Comparison of the per-
formance of the MLR and ANN 
models for five limits equilib-
rium methods for soil stability
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The accuracy of the training dataset using the SVM model is 0.992. This means that 
the support vector machine model is good enough to classify slope stability problems. The 
SVM model for unseen testing data correctly predicts 99 out of 100 cases.

Table 7 shows the details of the classification report for the support vector machine learn-
ing classification model. Out of all datasets that the model predicted as unstable, only 99% 
are unstable. Out of all datasets that the model predicted as stable, 95% were stable. Out 
of all stable datasets, the model correctly predicted 93% of those, and out of all unstable 
datasets, the model correctly predicted 100%.

Our model prediction is better because the F1 score for unstable slopes (1) and stable 
slopes (0.94) is closer to one. However, the F1 score for a stable slope is lower than that for 
an unstable slope. The SVM model predicts an unstable slope more correctly than a stable 
slope.

Figure 7 shows the confusion matrix classified from the support vector machine model. 
Out of 842 total test datasets.

 ● Fifty-six data points were classified as true positives, implying that the classification 
model correctly identifies stable slopes as stable.

 ● Five data points are false negatives, implying that the classification model incorrectly 
labelled stable slopes as unstable.

 ● Zero data are false positive as the classification model falsely labels unstable slopes as 
stable.

 ● A total of 781 data points is true negative, implying that the classification model labelled 

Fig. 7 Confusion matrix for sup-
port vector machine (SVM)
 

Attribute Precision Recall F1 score Support
1 0.95 0.93 0.94 61
0 0.99 1 1 781
Accuracy 0.99 842
Macro average 0.97 0.97 0.97 842
Weighted average 0.99 0.99 0.99 842

Table 7 Evaluation criteria esti-
mate for support vector machine
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unstable slopes as unstable.

3.3.2 Random forest (RF)

The RF classification model achieves an accuracy of 0.9881 on the training dataset. This 
means that the RF model is good enough to classify slope stability problems. The RF clas-
sification model for training data correctly predicts 98 out of 100 cases.

The accuracy of the RF classification model on the testing dataset is 0.973. This suggests 
that the RF model is effective in classifying slope stability problems. The RF classification 
model for unseen testing data correctly predicts 97 out of 100 cases.

Table 8 shows the details of the classification report for the RF learning classification 
model. Out of all datasets that the model predicted as unstable, only 97% were unstable. 
Out of all datasets that the model predicted as stable, 93% were stable. The model correctly 
predicted 67% of all stable datasets; out of all unstable datasets, the model correctly pre-
dicted 100%.

As the F1 score for an unstable slope (0.96) is nearly one, and a stable slope (0.78) is not 
closer to one, our model prediction is unreliable for a stable slope. However, the F1 score for 
a stable slope is far lower than that for an unstable slope. The RF classification model pre-
dicts unstable slopes more correctly than stable slopes. This model cannot be used for clas-
sification, as the prediction for positive data is much lower than other classification models.

Fig. 8 Confusion matrix for 
random forest
 

Attribute Precision Recall F1 score Support
1 0.93 0.67 0.78 61
0 0.97 1.00 0.99 781
Accuracy 0.97 842
Macro average 0.95 0.83 0.88 842
Weighted average 0.97 0.97 0.97 842

Table 8 Evaluation criteria 
estimate for random forest
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The confusion matrix generated by the RF is shown in Fig. 8. From a total of 842 test 
datasets,

 ● Forty-one data points are true positive, as the classification model labels stable slopes 
as stable.

 ● Twenty data are categorized as false negatives, implying that classified model misclas-
sified stable slopes as unstable.

 ● Three data points are false positives, implying that the classification model incorrectly 
classified unstable slopes as stable.

 ● A total of 778 data points are true negatives, as the classification model labelled unstable 
slopes as unstable.

3.3.3 Comparison of SVM and RF classification models

The predicted results from the classification models are compared to identify the most effec-
tive algorithms and accurately predict the slope class.

The accuracy rates for both the training and testing datasets exceed 90% for both the 
SVM and RF models. This indicates that both machine learning classification models for 
slope stability prediction are very effective. The F-1 score of the SVM model is 0.94, and 
the F-1 score of the RF model is 0.78.

Different performance metrics for machine learning classification models are shown in 
Table 9. SVM models have a higher accuracy of approximately 0.99, and the RF classifi-
cation model has an accuracy of 0.93. The precisions for SVM and RF are 0.95 and 0.93, 
respectively.

Each model is given a prediction score as an evaluation measure, with a greater score 
given to the model with the best performance indicators. SVM performs better than RF in 
the overall evaluation, making SVM the preferred choice for classification of slope stability 
issues.

Performance Indicator ML Models SVM RF
Accuracy 0.99 0.93
Precision 0.95 0.93
F-1 Score 0.94 0.78
Recall 0.93 0.67

Score Accuracy 6 1
Precision 5 3
F-1 Score 5 2
Recall 5 2
Total 21 8
Overall Rank 2 6

Table 9 Measurements of clas-
sification model’s performance 
in terms of various indicators to 
evaluate the overall rank of ML 
models
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4 Discussion

4.1 Model performance

To demonstrated the model’s reliability and robustness, the performance evaluation of the 
developed models is essential. Table 10 consists of 24 slope cases collected from the litera-
ture. Datasets from serial numbers 1 to 11 are from Samui (2008) for the United Kingdom 
and Canada, and datasets from serial numbers 12 to 24 are from Chakraborty and Goswami 
(2017) for the Jorabat-Shillong Expressway (NH-40) in India. These analytical findings are 
compared with the outcomes of the prediction models.

The prediction of the FOS from MLR models on real slope datasets is presented with the 
scatter plot in Fig. 9. The regression plot shows a coefficient of determination value higher 
than 0.8; hence, all these models are found to have good coherency for predicting the output 
features. MLR model prediction aligns closely with the observed data from Chakraborty 
and Goswami (2017), validating the model applicability.

The scatter plot in Fig. 10 shows how an ANN model uses real slope datasets to estimate 
the FOS. Additionally, the regression figure shows a coefficient of determination that is 
higher than 0.8. These models thus show their efficiency in predicting the qualities of the 
output. Similar findings were observed in studies by Gelisli et al. (2015) and Ray et al. 
(2020) demonstrating effectiveness of ANN in predicting slope stability.

Table 10 Slope datasets from the literature used to compare with the ML model results
Data Source γ c ϕ θ H ru Actual FOS
Samui (2008) 16.00 70.00 20.00 40 115.00 0.00 1.11

20.41 24.90 13.00 22 10.67 0.35 1.40
19.63 11.97 20.00 22 12.19 0.41 1.05
21.82 8.62 32.00 28 12.80 0.49 1.03
20.41 33.52 11.00 16 45.72 0.20 1.28
18.84 15.32 30.00 25 10.67 0.38 1.33
18.84 0.00 20.00 20 7.62 0.45 0.85
19.06 11.71 28.00 35 21.00 0.11 1.09
18.84 14.36 25.00 20 30.50 0.45 1.11
18 24.00 30.15 45 20.00 0.12 1.12
22.40 10.00 35.00 45 10.00 0.40 0.90

Chakraborty and Goswami (2017) 17.40 5.00 43.50 58 29.00 0.05 0.67
17.80 14.00 44.20 65 31.00 0.07 0.45
19.80 57.50 41.30 62 23.00 0.19 1.74
17.60 39.50 30.20 50 38.00 0.04 1.17
17.30 39.00 30.00 50 35.00 0.04 1.19
17.80 38.70 30.50 60 26.00 0.00 1.22
17.90 39.00 31.20 55 25.00 0.15 1.21
17.30 39.00 30.00 50 26.00 0.20 1.39
17.30 37.90 30.00 45 29.00 0.37 1.16
17.50 38.50 29.00 50 33.00 0.20 1.07
17.50 39.20 29.70 55 31.00 0.00 1.17
17.80 39.80 31.30 45 32.00 0.34 1.13
17.30 39.00 30.00 48 30.00 0.03 1.41
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These models can be integrated into geotechnical engineering software and decision-
support systems utilized by engineers and planners. By using the ANN model based on 
Spencer’s method, which has proven to be the most reliable, allows for quick and accurate 
evaluations of slope stability over large areas, reducing the need for extensive soil property 
data and field investigations. Engineers can apply these models to real-world scenarios, 
such as roadside slope assessments in regions like Nepal, India, Canada, and the UK. This 
enhances slope safety, optimizes resource allocation, and promotes sustainability in engi-
neering projects involving soil slopes.

Fig. 9 Prediction of FOS from MLR models on real slope datasets for (a) Spencer, (b) Morgenstern-Price, 
(c) Janbu, (d) Fellenius, and (e)Bishop methods
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Fig. 10 Prediction of FOS from ANN models on real slope datasets for (a) Spencer, (b) Morgenstern-
Price (c) Janbu, (d) Fellenius, and (e) Bishop methods
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4.2 Implementation of the model in Nepal

Nepal, located in the Himalayas, experiences heavy monsoons and steep terrain, which 
frequently result in landslides (KC et al. 2021; Subedi et al. 2024). This problem is exacer-
bated by unanticipated road development. The number of roadways tripled between 1990 
and 2016, including unofficial roads, because of increased road construction for economic 
expansion. Landslides and road development expenditures are related in recent studies. In 
contrast to China, where 7% of fatal construction-related landslides occurred near road-
ways, 43% did so in Nepal, according to Froude and Petley (2018). These landslides have 
serious negative effects on society and the economy (McAdoo et al. 2018).

In this scenario, practitioner confidence is low for sophisticated techniques such as FE 
modelling for analysis of slope stability. There is a critical need for a more straightforward 
technique for evaluating the FOS of roadside slopes. It should also be functional for on-site 
engineers. Considering this necessity, we have implemented the ML model results of this 
study in the Nepal context. Table 11; Fig. 11 show the details of four typical roadside slope 
failure cases in Nepal. On the basis of data collected from the site and lab test results, FOS 
values from both LEM and ML were assessed. The results are coherent with each other, 
signifying the implementation of the model.

Table 11 Roadside slope cases of the Nepal Himalayas considered to compare with the results of ML models
Highway Location 

(Northing, 
Easting)

Soil 
Description

γ (kN/m3) c (kN/m2) ϕ(°) θ 
(°)

H 
(m)

FOS 
(From 
LEM)

FOS 
(From 
ML)

Araniko 
Highway

27°57’39.26”,
85°57’23.92”

Slightly 
weathered 
boulders of 
gneiss and 
schist with 
sands

20 0 30 35 27 0.955 0.898

Prithvi 
Highway

27°50’56.76”,
84°39’35.30”

Dark grey, 
slightly 
weathered, 
fine to medi-
um-grained 
quartzite, 
cobbles, 
pebbles.

23 0 32 37 34 0.933 0.912

Kanti 
Lokpath 
Highway

27°25’38.41”,
85°12’11.63”

Medium-
weathered 
boulders 
of Phyllite 
quartzites 
with sands 
and gravel

22 0 35 30 15 0.850 0.798

Besisahar-
Chame 
Road

28°15’22.27”,
84°22’01.53”

Fine-
Grained, 
very dense, 
milky white, 
fresh angular 
quartzite

24 0 36 34 29 0.915 0.892
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5 Conclusion

The availability of comprehensive and reliable datasets is one of the primary challenges 
with slope stability analysis, particularly when applying machine learning techniques. In 
this study, we prepared a robust dataset of 4,208 slope cases using limit equilibrium-based 
Slide software which included six key soil parameters (c, H, ϕ, γ, θ, and ru). This dataset 
split into 80% as training dataset and 20% as testing dataset encompasses a wide range of 
slope geometries and material properties. While the dataset supports model training and val-
idation, variation in geological, environmental, or geographical conditions could affect its 
real-world applicability and predictive accuracy. The FOS values estimated by the Bishop, 
Fellenius, Janbu, Morgenstern-Price, and Spencer methods were used to model both multi 
linear regression (MLR) and artificial neural network (ANN). The classification models 
(i.e., random forest (RF) and support vector machine (SVM)) were adopted to predict the 
output for unseen data. R2 and MAE are used for both the training and testing datasets to 
evaluate the prediction performance of the models. The performance of the models was vali-
dated by comparing the predicted outcomes with roadside slopes from different locations 
in Nepal, India, Canada, and the UK. Based on the results obtained, we draw the following 
conclusions.

Fig. 11 Site locations of four cases of roadside slope failures: (a) Araniko highway, (b) Prithvi highway, 
(c) Kanti Lokpath highway, and (d) Besisahar-Chame road (as shown in detail in Table 10)
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 ● ANN and MLR shows effectiveness in analysing stability of slopes.
 ● The MLR model for the bishop method predicts most accurately, with a regression coef-

ficient of 0.948, and the performance of the other models is also good, with an R2 value 
exceeding 0.9.

 ● The ANN model for the Spencer technique yields the most precise predictions, with 
regression coefficients of 0.966 and 0.973 for the training and testing datasets, respec-
tively.

 ● The accuracy of the classification model is 0.929 and 0.992 for RF and SVM, respec-
tively.

 ● The ANN model developed for all methods surpasses the prediction performance over 
the MLR model in all cases.

Overall, the methodology utilized to assess slope stability in terms of FOS would be benefi-
cial in the field of decision-making for engineers. This study advances mitigation, design, 
and early warning systems by offering more accurate predictive models and optimizing 
design parameters. Compared to previous research, machine learning offers greater preci-
sion, adaptability, and efficiency in addressing natural disasters and hazards. The findings 
demonstrates that the ANN model, based on Spencer’s method, provides the highest reli-
ability, offering new insights for simplified decision-making in slope safety and enhanc-
ing sustainability in engineering projects. These findings highlight the potential of ML 
techniques to improve the accuracy and efficiency of slope stability assessments compared 
to earlier studies. This study does, however, have certain limitations, such as its reliance 
on a dataset created with Slide software, which may not fully capture the complexities of 
real-world slope conditions. The models developed, including MLR, ANN, RF, and SVM, 
depend on the quality and representativeness of this dataset. While the study validated these 
models with roadside slope cases in Nepal, India, Canada, and the UK, this may not encom-
pass all geographical and geological variations, potentially limiting the generalizability of 
the findings. These models might need recalibration and more data to be applicable in dif-
ferent regions or conditions, necessitating further research and adaptation for broader use.
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