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Abstract
Landslide disasters in Nepal are widely reported to have increased in the last decade, but there has been limited on trends 
in landslide occurrence in Nepal from 2011 to 2020. This study presents the spatio-temporal distribution and trends of 
landslide disasters in the Nepal Himalayas and identifies landslide-prone areas. Landslide disaster data was collected to 
assess annual variations, investigate the relation between rainfall and landslides, describe the landslide distribution pattern, 
conduct statistical analysis, and predict landslide causes and triggering factors. The dataset suggests that the overall trend 
in landslide disasters in Nepal from 2011 to 2020 is increasing, with a high level of variability in the number of landslide 
disasters from year to year, depending on several factors. Results show that landslide events were clustered in space and time, 
with 93.26% of total landslides occurring in the rainy season. The average density of landslide disasters in 2011 was 0.85 
events per 1000 km2 and increased to 3.34 in 2020. The effect of earthquake preconditioning was observed as the landslide 
disaster rate has been elevated since the 2015 Gorkha earthquake with systematic shifting of locations over time. Power-law 
relationships fit well for the cumulative frequency distribution of daily landslide disasters and the probability density of time 
interval between landslides. The gap between landslide events was observed as 1–170 days. Moreover, trend analysis has 
shown an increasing trend of landslide disasters both seasonally and annually.
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Introduction

A large number of casualties, economic loss, and environ-
mental degradation are incurred in Nepal every year. In the 
last decade (2011–2020), 2121 landslide disasters were 
reported and took the lives of 1206 people. In 2020, 493 
landslide disasters claimed the lives of 303 people, 64 were 
missing, and 226 people were injured (Nepal DRR Portal 
2020). Nepal is highly vulnerable to landslides due to its 
diverse geographical landscape, complex topography and 
geomorphology, active seismic faults, young geologic struc-
tures, and varying climatic conditions (Petley et al. 2007; 

Bhandary et al. 2013; Kc et al. 2021). In addition to intense 
rainfall during the monsoon season, urban growth, non-engi-
neered construction in landslide-prone areas, and complex 
interaction of socioeconomic factors have also exacerbated 
terrain conditions over the last few decades, hastening the 
occurrence of landslides (McAdoo et al. 2018; Bhandari and 
Dhakal 2020; Gautam et al. 2021).

Landslide disaster casualties are often underestimated, 
resulting in unexpected landslide risks (Lin and Wang 2018). 
Observing landslides remains challenging due to their local 
effects and a shortage of hazard tracking networks. So, it is 
crucial to investigate the spatio-temporal characteristics of 
landslides, including their frequency, severity, and human 
impact (Zhang et al. 2018; Zhang and Huang 2018). Since 
landslides tend to reoccur in the same region (Malamud et al. 
2004), investigating the spatio-temporal distributions of 
landslides allows identifying vulnerable locations (Dai et al. 
2011; Petley 2012; Kirschbaum et al. 2015). It enhances 
our understanding of landslide mechanisms, landslide occur-
rences, and predisposing factors, which further allows us to 
assess and model landslide hazards, estimate denudation and 
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erosion rates, develop effective geodisaster early warning 
systems, and provide prefeasibility data for infrastructures 
development (Zuo et al. 2009; Tonini and Abellan 2014; Qiu 
et al. 2019a, b). Existing landslides leave a lasting influence, 
influencing the occurrence and size of subsequent landslides, 
concept known as path dependency, developed by Samia 
et al. (2017). For instance, studies in Italy and Nepal reveal 
path dependency in landslides, wherein past landslide occur-
rences elevate the likelihood of new landslides over a 10–15 
years period (Roberts et al. 2021; Samia et al. 2017; Temme 
et al. 2020). Thus, the study of the spatiotemporal distri-
bution of past landslides provides a chance to determine 
whether areas may be prone to landslides in the future (Qui 
et al. 2019).

Numerous studies have examined the spatio-temporal 
distribution of landslides globally (Nadim et al. 2006; Pet-
ley 2012; Kirschbaum et al. 2015) and at continental scale 
(Sepúlveda and Petley 2015; Haque et al. 2016). Landslides 
were found clustered in South Asia, Southeast Asia, China, 
Latin America, and the Caribbean between July and Septem-
ber because of high rainfall. Moreover, Nepal is classified as 
a high-risk area on the global landslide risk chart prepared 
by (Nadim et al. 2006). On a national scale, Guzzetti et al. 
(2012), Pennington et al. (2015), Damm and Klose (2015), 
Pereira et al. (2016), Lin and Wang (2018) and Tonini et al. 
(2020) have conducted spatio-temporal studies of landslides 
in Italy, Britain, Germany, Portugal, China, and Italy, respec-
tively. Although Nepal is severely affected by landslide 
events, few studies have been done on the distribution and 
trend analysis of landslides in it. Karmacharya (1989) used 
a spatial distribution analysis to examine the relationship 
between overall landslide incidents and yearly rainfall in 
Nepal from 1971 to 1980. The analysis showed that the land-
slide rate was highest in areas with higher annual rainfall. 
Petley et al. (2007) analyzed the landslide trend from 1978 
to 2005 and concluded that the landslides effect is growing 
over time and is likely underrepresented as a threat in Nepal.

The conventional statistical susceptibility approaches 
assume that the probability of a landslide occurring remains 
constant over time. However, it is well-established in recent 
years that various factors such as climatic conditions, seis-
mic activity, and human activities can trigger landslides. 
Recent studies have pointed out that climate change has 
caused an increase in landslide occurrences in many parts 
of the world (Gariano and Guzzetti 2016; Zhu et al. 2021; 
Jakob and Owen 2021). Burrows et al. (2023) studied the 
monsoon landslides in Nepal in 2015, 2017, 2018, and 2019 
and identified that both spatial and temporal distribution of 
landslides associated with specific intense rainfall events 
in the region. They reported elevated number of landslides 
occurred in the early stage of the 2015 monsoon following 
the 2015 Gorkha earthquake. Jones et al. (2021) reported 
that the 2015 Gorkha earthquake landscape preconditioning 

shifted monsoon-triggered landslides in 2015 to higher 
slopes, reliefs, and excess topographies. The earthquake 
preconditioning refers to the phenomenon where land-
scape damage caused by earthquakes leads to a temporary 
increase landslide event in the region over a short period of 
time (Roberts et al. 2021; Jones et al. 2023). McAdoo et al. 
(2018) addressed relation between roads and landslides in 
Nepal. They reported that landslides occurred twice as fre-
quently on terrain with poorly built roadways than terrain 
without roads. Similarly other extreme events such as cloud 
bursts and floods, have been identified as causing tempo-
rary changes in the spatial distribution of landslides (Roberts 
et al. 2021). Despite these observations, our understanding 
of how landslide spatial distributions change over time is 
limited due to the absence of systematic investigations.

In this regard, the study of spatial, temporal, and trend 
analysis of landslide occurrences using more recent data is 
imperative for the assessment and modelling of landslide 
hazards, the estimation of erosion and denudation rates, the 
development of efficient landslide early warning systems, 
land use planning and the clear understanding of histori-
cal environmental changes (Pennington et al. 2015; Damm 
and Klose 2015; Lin and Wang 2018; Tonini et al. 2020). 
Nepal still lacks a sound approach to locate areas vulner-
able to landslides (Bhandary et al. 2013), a preliminary step 
towards landslide prevention and mitigation (Vakhshoori and 
Zare 2016; Pirasteh and Li 2016). This research analyses the 
current trend of landslide disasters between 2011 and 2020 
in Nepal and their spatio-temporal distributions. A total of 
2121 landslide disaster events from 2011 to 2020 were com-
piled to assess annual and monthly variations, distribution 
patterns, and spatio-temporal and trend analysis.

Study area

The high mountains in the Nepal Himalayas result from 
the youngest mountain-building process due to the colli-
sion of the Indian Plate and the Eurasian Plate (Dhakal 
2017). Nepal has the world's highest relative relief, with 
a minimum elevation of 70 m and the highest 8848 m 
at Mount Everest's summit (Fig. 1) within 200–300 km 
distance from south to north. Population of the hilly and 
mountainous regions decreased from 49.74 to 46.36% from 
2011 to 2020 (World Bank Open Data 2023). However, the 
urban population of Nepal increased from 17 to 21% dur-
ing the same period, reflecting the ongoing urbanization 
trend (World Bank Open Data 2023). The country's GDP 
has also shown a positive trend during this period, increas-
ing from 21.57 Billion US $ to 33.43 Billion US $. These 
trends demonstrate the complex relationship between pop-
ulation distribution, economic growth, and natural hazards 
in Nepal, and highlight the need for continued research 
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and policy efforts to manage risk and support sustainable 
development (World Bank Open Data 2023). With a long 
history of earthquakes, Nepal is one of the most seismi-
cally active places on the planet. More than 11 earthquakes 
greater than Mw 7.0 have been recorded since the twelfth 
century. More than 21,000 co-seismic landslides were 
observed because of the 2015 Gorkha earthquake (Mw 7.8) 
(Valagussa et al. 2021). Nepal is influenced by significant 
tectonic zones, including Tibetan-Tethys Himalaya Zone, 
Higher Himalaya Zone, Lesser Himalaya Zone, Sub-Hima-
laya (Siwalik) Zone, and Terai Zone (Dahal 2006; Sharma 
et al. 2018). Active tectonic faults, such as the Main Cen-
tral Thrust (MCT), Main Boundary Thrust (MBT), Main 
Frontal Thrust (MFT), and South Tibetan Detachment Sys-
tem (STDS), split these tectonic zones. They are caused by 
the collision of the Indian and Eurasian plates (Copeland 
1997); Dahal 2006). The lithology, tectonics, structures, 
and geological history of these tectonic zones are distinct 
(Pradhan et al. 2006). The Tibetan-Tethys Himalaya Zone 
is made up of sedimentary rock from the Cambrian to the 
Eocene epochs, such as shale, limestone, and sandstone. A 
10 km thick sequence of severely metamorphosed coarse-
grained rocks and weathered sedimentary lithologies 
makes up the Higher Himalaya Zone. The Lesser Hima-
laya contains primarily low-grade metamorphic, sedimen-
tary, and meta-sedimentary crystalline rocks aged from 
the Precambrian to the Eocene (Hasegawa et al. 2009). 

The Sub-Himalaya Zone is composed of very thick tertiary 
deposits of the outer Himalayas. The deposits consist of 
sandstone and poorly consolidated conglomerate rock with 
increasing coarsening sequences.

The winter season in Nepal is primarily dry, while a 
significant amount of rainfall occurs in summer. The aver-
age total annual precipitation is about 1900 mm, of which 
80% is concentrated during the monsoon season (i.e., May 
to September) (Babel et al. 2014). Temperature is highly 
variable across the country, depending on geography and 
elevation. The annual mean temperature in the country was 
25.4 °C from 1973 to 2008 (Devkota 2014). The distribu-
tion of rainfall is strongly heterogeneous, both temporally 
and spatially. Annual rainfall ranges from < 250 to 6000 
mm in the north Himalayas and central Nepal, respectively 
(Bhandary et al. 2013). This highly irregular rainfall trend 
is also a significant cause of landslide-related disasters. 
This region has also been hit by the cloud outburst storms 
in the past. Cloudburst at a time when the ground is satu-
rated can lead to several landslides in the regions (Jones 
et al. 2021; Paudel and Andersen 2013).

Overall, because of rugged topography, steep relief 
(highly elevated mountains and deep river valleys), varia-
ble climatic conditions with high rainfall intensities, com-
plex and young geological structures, and active tectonic 
processes, landslides are very common in the mountains 
that cover about 83% of the area of Nepal.

Fig. 1   Major geological zones 
with lithology (redrawn after 
Dhital (2015)) and faults in the 
study area
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Material and methods

Data collection

Landslide data are the fundamental elements to analyse 
the spatio-temporal distribution of landslide occurrences. 
A dataset of landslide disasters that occurred from 2011 to 
2020 (Fig. 2) was collected from Nepal Disaster Risk Reduc-
tion (DRR) catalogues. It includes the landslide disaster data 
as a point data set with locations reported in Ministry of 
Home Affairs (MoHA). The dataset contains landslide dis-
asters that caused damage and loss of human and property 
occurred near human settlement areas. Thus, landslide dis-
asters that occurred during the study period without causing 
any casualties or economic losses were not listed in DRR 
catalogues. Data (Table 1) shows the year wise number of 
landslide disasters, number of deaths, missing, and injured; 
and economic losses. Moreover, the season-wise distribution 
of the landslide disasters during the study period is shown 
in Table 2. Table 2 reveals a very strong seasonality in the 
occurrence of landslide disasters associated with the mon-
soon (a rainy season in South Asia), which in Nepal starts 
in summer and ends in early autumn. Since the primary 
focus of this research is the temporal and spatial distribu-
tion of landslide disasters, the precision with which location 
information was provided is adequate for this study. The 
standardized database was further used to derive spatial and 
temporal variations of landslide disasters across the country.

The rainfall data were collected from the Department 
of Hydrology and Meteorology (DHM). Using the annual 
rainfall database of 261 rain gauge stations located across 
the country, yearly rainfall distribution was interpolated and 
produced. Monthly average rainfall was derived from a data-
set generated by the University of East Anglia's Climatic 
Research Unit (CRU) (Harris et al. 2020).

Spatial analysis

Spatial analysis was applied to deduce the spatial distribu-
tion patterns and mechanisms associated with landslides 
(Qiu et al. 2019a, b). Average Nearest Neighbour (ANN) 
and Kernel Density methods, with the help of ArcGIS, were 
applied to study the spatial distribution of landslide disasters 
across the country.

Average nearest neighbour (ANN)

The ANN algorithm determines spatial distribution (Scott 
and Janikas 2010) by calculating the distance between the 
centroids of each feature and its nearest neighbour. Then, it 
sums up these distances. The distribution is clustered if the 

average distance between two points is less than the average 
for a random distribution. Otherwise, the features are said to 
be scattered. Normal distribution probability density function 
was used in the analysis.

ANN is calculated by using the following relation (Eq. 1):

Here, D′
O
 denotes the average distance observed between 

each element and its nearest neighbour (Eq. 2):

and D′
E
 is the predicted mean distance between the features 

in a random way (Eq. 3):

where di is the separation from feature i to its neighbour, n 
is feature number, and A is the area of the smallest rectangle 
which encompasses all characteristics. Here, in our case, 
landslides are the features. The ANN z-score for the statis-
tics is also called a global cluster indicator (Eqs. 4 and 5).

where,

If the ANN value is less than 1, the pattern shows cluster-
ing. If it exceeds 1, the trend is toward dispersion.

Kernel density

The Kernel Density method computes the density of features 
in their immediate vicinity (Guthrie and Evans 2004). It was 
used in this study to determine the magnitude of a landslide 
per unit area by fitting a landslide point with a smooth taper-
ing surface using a Kernel function. The following Equation 
approximates the kernel density in two-dimensional space (Xie 
and Yan 2008; Chu et al. 2012; Cai et al. 2013; Silverman 
2018) (Eq. 6):

where λ(s) denotes the density of position ‘s’; ‘n’ denotes the 
sampling point number; ‘k’ represents the point ‘i’ weight 
at dis distance from ‘s’; and finally, ‘r’ denotes the radius of 
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Fig. 2   Spatial distribution of 
landslide disasters in Nepal 
Himalayas, 2011–2020
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search for estimating kernel density. The kernel function 
used in this work was derived from the Gaussian Kernel 
Function (Xie and Yan 2008; Chu et al. 2012) (Eq. 7):

Power law relation

The total sum of frequencies greater than the daily landslide 
occurring at the moment can be called cumulative frequency 
(FC) of daily landslides (NL). In this scenario, the cumulative 
incidence can illustrate the daily occurrence of landslides 
over a particular amount. A power law relation (Eq. 8) was 
applied to estimate the cumulative landslide occurrence.

(7)k

�
dis

r

�
=

�
1√
2𝜋

exp
�
−

d2
is

2r2

�
, if < dis ≤ r

0, otherwise

�

where environment-dependent constants are denoted as C 
and α.

Furthermore, to assess time series, landslides occurring 
the same day are called single landslides. Days are used to 
define the time (T) between landslide occurrences. A time 
interval's probability density (P) denotes the relative likeli-
hood of occurrence within specific periods. It can be used to 
measure and forecast the possibility of landslides (Qiu et al. 
2019a, b; Qiu et al. 2020). Power law was used to represent 
the following relationship (Eq. 9):

where D and β denote local conditions dependent constants.

Trend analysis

Sen's slope method

A nonparametric approach for analyzing patterns in time 
series suggested by (Sen 1968) is termed Sen's slope method. 
The formula to estimate Sen's slope is given in Eq. (10):

where β is the Sen's slope,Xj and Xi are the time series' ele-
ments in time j and i (j > i) respectively, and Median is the 
median feature. When the value of β exceeds 0, the time 
series exhibits an increasing pattern. When the value of β is 
less than 0, the time series shows a declining pattern.

Mann–Kendall method

The Mann–Kendall (MK) method can be defined as a non-
parametric measure that does not suffer from outliers (Mann 
1945; Kendall 1948). It is used for determining the impor-
tance of time series patterns (Donat et al. 2013). The formula 
used is shown below (Eqs. (11) and (12)):

where ‘S’ is the test statistic of MK ;Xj and Xi represent the 
time series’ ‘j’ and ‘i’ data, respectively; and the duration of 
the time series is ‘N’.
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Table 1   The number of landslide disasters, fatalities, and economic 
loss in Nepal, 2011–2020 (Nepal DRR Portal 2020)

Year No. of 
landslide 
disasters

Deaths Missing Injured Economic Loss 
(Million USD)

2011 126 110 24 81 0.39
2012 102 60 8 33 0.18
2013 97 87 22 57 1.44
2014 75 113 129 96 0.20
2015 62 138 13 84 0.01
2016 234 148 9 144 6.93
2017 163 70 15 56 0.53
2018 320 91 2 126 1.11
2019 449 86 11 93 3.46
2020 493 303 64 226 0.44
Total 2121 1206 297 996 14.68

Table 2   Season-wise distribution of landslide disasters in Nepal, 
2011–2020

Year Spring (Mar–
May)

Summer 
(Jun–Aug)

Autumn 
(Sep–Nov)

Winter 
(Dec–
Feb)

2011 3 105 18 0
2012 6 81 14 1
2013 3 75 17 2
2014 3 64 8 0
2015 3 54 5 0
2016 11 170 53 0
2017 13 127 19 4
2018 18 240 60 2
2019 20 343 71 15
2020 5 420 62 6
Total 85 1679 327 30
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S is raised by one if a later period's value is greater than 
an earlier period's value. Alternatively, S is decremented by 
one if the subsequent time period is less than the preceding 
period. Sum of these increments and decreases equals the 
final ‘S’ value (Shahid 2011). So, using Eq. (13), test statistic 
z is calculated to determine the existence of any statistically 
relevant pattern.

where z is higher than zero, the time series is ascending. 
If z is smaller than 0, it seems as though the time series 
is shrinking. Additionally, if the statistic z has an absolute 
value larger than 1.96, the pattern in a time series satisfies 
the 0.05 level of significance.

Results and discussion

Spatio‑temporal distributions

The spatial distribution of landslide disasters exhibited a 
strong heterogeneity across the country from 2011 to 2020 
(Fig. 2). The overall landslide disaster density in Nepal 
was 14.38 events per 1000 km2, with an annual average of 
1.44 events per 1000 km2. It is also clear that the density 
of landslide disasters increased significantly from 2011 to 
2020. The density of landslide disasters in 2011 was 0.85 
events per 1000 km2 and reached 3.34 events per 1000 km2 
in 2020. The data show that the density of landslide disasters 
is higher in the east than in the west; the density of landslide 
disasters decreases gradually from east to west, as shown 
in Fig. 2. This might be attributed to higher rainfall in the 
eastern part of Nepal (Kansakar et al. 2004). Figure 2f shows 
that, a year after the 2015 Gorkha earthquake, most land-
slide disasters were concentrated in the central and eastern 
parts of Nepal. The 2015 Gorkha earthquake and its several 
aftershocks caused the steep slope vulnerable to landslides, 
resulting in many landslides in consecutive years. The 2015 
Gorkha earthquake hard hit the central and eastern parts of 
Nepal. The annual average landslide disaster density before 
and after the 2015 Gorkha earthquake was 0.42 and 1.59 
events per 1000 km2

, respectively. Hundreds of earthquake-
induced landslides were reported in Nepal's central and east-
ern parts during the 2015 Gorkha earthquake (Tiwari et al. 
2017; Gautam 2017). Earthquake-induced landscape damage 
can lead to temporary spikes in landslide rates over annual 
to decadal intervals, a phenomenon known as earthquake 
preconditioning, first proposed by Parker et al. (2015), and 

(13)z =

⎧
⎪⎪⎨⎪⎪⎩

(S−1)√
n(n−1)(2n+5)

18

S > 0

0S = 0
(S+1)√
n(n−1)(2n+5)

18

S < 0

⎫
⎪⎪⎬⎪⎪⎭

developed by Marc et al. (2016). This is often a consequence 
of seismic damage accumulating temporarily on hillslopes, 
mountain ridges, and other topographic features due to the 
amplification of earthquake ground motion. Additionally, 
the locations of rainfall-triggered landslides following the 
1999 Chi Chi earthquake (Lin et al. 2006), the 2005 Kashmir 
earthquake (Shafique 2020), the 2008 Wenchuan earthquake 
(Tang et al. 2016) and the 2015 Gorkha Nepal earthquake 
(Burrows et al. 2023; Jones et al. 2021), were observed to 
shift to higher slope angle, reliefs, and excess topographies. 
As shown in Fig. 2h–j, the largest cluster of landslide dis-
asters in 2018, 2019 and 2020 appear to be in earthquake 
affected central Nepal. More detailed study is required to 
investigate effects earthquake preconditioning in spatio-
temporal variation of the landslides disasters in Nepal.

Figure 3a shows the distributions of annual landslide 
disaster events and rainfall with the number of casualties 
from 2011 to 2020. Figure 3a shows a slow decline in land-
slide disasters from 2011 to 2015; however, the number of 
fatalities increased gently. The jump in the annual number 
of landslide disasters caused by the 2015 Gorkha earthquake 
is also seen in Fig. 3a. The higher number of landslide dis-
asters from 2016 to 2020, compared with 2011 to 2015, 
was mainly associated with the 2015 Gorkha earthquake. 
Figure 3a showcases that the landslide hazard remains sig-
nificantly higher today than on the day of the earthquake in 
2015. There was no consistent relationship between the total 
annual landslide disasters and rainfall from 2011 to 2020. 
Though the annual rainfall from 2015 to 2020 was consist-
ent, the number of landslide disasters increased since 2016.

Figure 3a shows that the annual landslide occurrence in 
Nepal does not solely depend on the amount of rainfall. The 
total landslide disaster occurrence and casualties from 2011 
to 2020 showed a steady trend line. The fewest casualties 
occurred in 2012, when 60 people died in 102 landslide dis-
aster events, while the most occurred in 2020 when 303 peo-
ple died in 493 landslide disaster events (Table 1). Casualty 
numbers have been increasing over the last few years. Petley 
et al. (2007) also reported an increasing trend of landslides 
and casualties from 1978 to 2005. Some interesting patterns 
are evident from 2012 to 2016 and again from 2017 to 2020, 
when the number of landslide disasters and deaths increased 
continuously.

To analyse the trend of landside disasters in the last 40 
years (1981–2020), an additional 30 years (1981–2010) of 
landslide data collected by the National Society for Earth-
quake Technology (NSET) from print media, reports, 
journals and research was combined with the study data 
(Fig. 3d). Two general increasing trends can be observed in 
the data, one from 1981 to 2002 and another from 2005 to 
2020. From 1981 to 2002, landslide frequency ranges from 
10 to 388 per year, with an average value of 77. From 2005 
to 2020, landslide frequency significantly increased from 20 
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to 493 per year, with an average value of 179. The abrupt 
increase in landslide frequency per year after 2002 might 
be attributed to the human intervention in the landscape. 
Several studies reported that landslide frequency increased 
significantly due to the rapidly increased road construc-
tion and other development activities in Nepal after 2000 
(Bhandary et al. 2013; Sepúlveda and Petley 2015; McAdoo 
et al. 2018).

The landslide disaster and rainfall monthly distributions 
are very consistent in terms of their peak in time, as shown 
in Fig. 3b. Even in Nepal, the monthly variation of landslide 
disasters showed that most landslides (93.26%) occurred 
during the rainy season, from June to September (Fig. 3b). 
A sharp increase in landslide occurrence was observed in 
July, with a slightly lower but significant number of land-
slides in August and September. No landslide disasters were 
reported from October to February, with deficient number 
of landslides from March to May. The monthly variation of 
landslide disasters and rainfall strongly indicates that rainfall 
is one of the triggering factors of landslides in Nepal. Dai 
et al. (2002) and Crosta (2004) reported that rainfall has the 
most significant influence on the occurrence of landslides 

in Nepal. Figure 3c illustrates the monthly variation of the 
death toll due to landslide disasters. The monthly landslide 
disaster events and the number of deaths follow more or less 
the same trend shown in Fig. 3b and c. The fatality rate was 
worst in July when many landslides occurred.

Figure 4a shows the fatalities due to all observed hazards 
versus landslide disasters during the study period. It is worth 
noting that landslide deaths now account for a significant 
portion of the total death toll. Sharp peak is seen in 2020 
that align with widely reported flood and landslide events 
(Government of Nepal 2020). Moreover, Fig. 4b exhibits a 
striking resemblance to the trend variation of deaths regard-
ing the pattern variation of economic damage due to land-
slide disasters. The maximum loss was observed in 2014, 
mainly due to the deadly Jure landslide (Ministry of Irriga-
tion 2014). The Jure landslide buried about 1 km of Araniko 
Highway, a major highway leading to China, and caused the 
economic blockade with China.

The spatial distribution of landslide disasters on the pro-
vincial scale is shown in Fig. 5a. The list of provinces in 
Nepal is presented in Table 3. Koshi, Bagmati, and Gandaki 
Provinces were found to the landslide hotspot provinces, 

Fig. 3   Graphical representation of a number of landslide disas-
ter events and deaths caused scenario for the period 1980–2020; b 
number of landslide disasters and casualties (2011–2020); c number 

of landslide disaster events (2011–2020) with average monthly rain-
fall (1901–2016) shown for context; and d month-wise total deaths 
caused by landslide disasters (2011–2020)
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accounting for 68.32% of landslide disasters between 2011 
and 2020 (Fig. 6a), where in all cases, the percentage of 
landslides exceeds the percentage of land area covered. 
These three provinces can be properly considered as sus-
ceptible to landslide disasters. Landslide disasters occurred 
most in the Bagmati province, with 516 occurrences, fol-
lowed by Koshi Province (488), Gandaki (445), Lumbini 
(240), Karnali (197), Sudurpashchim (170), and Madhesh 
Province (65). Based on the landforms of Nepal, there are 
three regions: Terai (Plains), Hilly, and Mountain. Landslide 
disaster distribution on these landforms is shown in Fig. 5b. 
Landslide disaster events were exceptionally high in the 
Hilly Region, especially in the central and eastern parts of 
the country, with 1413 events (66.62% of total landslides). 
The Mountain Region has 500 landslide disaster cases, fol-
lowed by the Terai Region with 208 (Fig. 6b). The percent-
age of landslides occurred in Mountain Region (23.57%) is 
higher than the area of land covered by it (15%) showing 
higher susceptibility than two other landforms. The districts 
located partly within the Siwalik Hills were included in the 
study as landslides are known to occur there in the Terai 

Region. In contrast, other parts of the Terai Region, which 
have a slope of less than 5 degrees, are not expected to expe-
rience landslides. As shown in Fig. 6b, Terai and northwest 
Mountain districts have a low density of fatal landslides. 
This distribution seems to be dictated mainly by slope angle 
as well as local relief and rainfall. The Terai districts are 
essentially flat plains with few landslides. The distribution 
of landslides in the Hill and Mountain Regions is somewhat 
consistent with the distribution of annual rainfall, construc-
tion activities, and human settlement, which is highest in the 
Hill districts, especially in central and eastern Nepal.

To identify the potentially triggering factors of landslides, 
the relationship between the distribution of landslide dis-
asters and influencing factors were mapped. A simplified 
geological map given by Carosi et al. (2013) was used for the 
spatial distribution study, as shown in Fig. 5c. The geologi-
cal distribution of landslide disasters was mapped based on 
geological formation in Nepal. The map includes six geo-
logical regions: the greater Himalayan sequence, the high 
Himalayan leucogranites, the lesser Himalayan sequence, the 
Quaternary alluvium, the Siwalik deposits, and the Tethyan 

Fig. 4   a The number of people 
killed in landslide disasters and 
all geohazards that have been 
reported; b economic losses (in 
million USD) due to recorded 
geohazards and landslide 
disasters
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sedimentary sequence (Fig.  5c). The Lesser Himalaya 
Zone has the highest number of landslide disasters (1134 
events) and deaths (11), followed by the greater Himalayan 
sequence, the Siwalik deposits, the Tethyan sedimentary 

sequence, the Quaternary alluvium, and the high Himalayan 
leucogranites, with occurrence rates of 591, 153, 123, 109, 
and 11, respectively (Fig. 6c). The percentage of landslides 
in the Lesser Himalayan Sequence (53.47%) is significantly 

Fig. 5   Spatial distribution of 
landslide disasters from 2011 to 
2020 presented in a province, b 
landform regions, c geological 
formation, d annual rainfall, 
e slope, and f elevation range 
scale

Table 3   The probability that an 
individual would be affected by 
landslide disasters (2011–2020)

S. No Province No. of Landslide 
disasters

Population (in 
thousand)

Landslide disasters 
per 1000 people 
(10–2)

1 Koshi 488 4534 10.76
2 Madhesh 65 5404 1.21
3 Bagmati 516 5529 9.33
4 Gandaki 445 2403 18.51
5 Lumbini 240 4499 5.33
6 Karnali 197 1570 12.54
7 Sudurpashchim 170 2552 6.66
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greater than the percentage of area covered by this region 
(32.30%). The increased susceptibility of landslides in this 
region can be due to the Mahabharat Range and midland 
area, where annual rainfall is comparatively higher, and the 
frequency of high-intensity rainfall is also high (Bhandary 
et al. 2013). Although the slopes in the midland area are 
gentler than in the Churia and Mahabharat Ranges, the pres-
ence of thick soil formations in slopes, weathered metasedi-
mentary rocks, and major thrust fault systems (Hasegawa 
et al. 2009) makes it prone to landslides. Several studies 
reported that natural factors induced a few landslides, and 
most of them were caused by non-engineered development 
activities, such as road construction (Hasegawa et al. 2009; 
McAdoo et al. 2018). Development activities are highly 
concentrated in the Lesser Himalaya Zone, as this region 
is home to around 40% of Nepal's population (CBS 2011).

The thematic maps of slope and elevation factors were 
prepared using the data from digital elevation model (DEM) 
of resolution 30 m × 30 m provided by United State Geologi-
cal Survey (USGS). Landslide disaster distribution based on 
rainfall intensity and slope range scale is shown in Fig. 5d 
and e. The landslide occurrence across the country increased 
significantly with the increasing slope angle. Landslide 
occurrence was found higher above the slope angle of 45°. 
However, numerous landslide disasters occurred in areas 
with lower slopes. This may be because anthropogenic 
activities mostly caused the landslides in those areas. In 

the Sub-Himalaya (Siwalik) Zone, more landslides was 
observed when the slope is greater than 15°. A rainfall inten-
sity map was prepared using average annual rainfall data 
(2011–2020) from DHM. Areas with higher values of rain-
fall and slope angles are found to be more prone to landslide 
events, which is consistent with the results reported by Pet-
ley et al. (2007), Dahal et al. (2009), Dahal (2012), Timilsina 
et al. (2014), and Bhandari and Dhakal (2020). Similarly, on 
the elevation class scale, landslide distribution is high for 
1000–1500 m (619 events) and 1500–2500 m (572 events) 
ranges (Fig. 6d), where the percentage of landslide disasters 
occurred is higher than the area covered by these elevation 
ranges. Thus, the areas in the elevation classes (1000–2500 
m, as shown in Fig. 5f) with high annual rainfall were more 
susceptible to landslide disaster events.

Vulnerability analysis

Landslide vulnerability is a critical hazard indicator for haz-
ard analysis and assessment since it can serve as the foun-
dation for preventing and mitigating landslides (Corominas 
et al. 2014). In this case, each individual's vulnerability to 
landslides is considered. Additionally, a vulnerability study 
was conducted using the most recent demographic statis-
tics from the 11th national census in 2011 (CBS 2011). As 
seen in Table 3, considering significant demographic dif-
ferences between provinces, the vulnerability parameter 

Fig. 6   Feature-wise landslide disaster distribution by a province, b landform region, c geological formation, and d elevation range
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is primarily affected by the number of landslide disasters. 
Bagmati, Koshi, and Gandaki provinces have been the worst 
affected, with many landslide disasters and comparatively 
high vulnerability. Lumbini also has significantly more 
landslide disasters, but the vulnerability is lower due to its 
large population. However, although having fewer landslide 
disasters than Lumbini, in Karnali province the vulnerabil-
ity is substantial (12.54 × 10–2) due to its tiny population 
(the lowest of Nepal's provinces). Among all provinces, the 
landslide occurrences and vulnerability value are minimal 
in Madhesh province.

Spatial analysis

Average nearest neighbour (ANN)

Figure 7 depicts the significant degree to which the geo-
graphical distribution pattern of landslides is reliant on dis-
tinct z-scores. In general, z-scores with smaller values sug-
gest a more concentrated spatial distribution of landslides, 
while z-scores of larger values show a more distributed 
spatial distribution. The p-value estimates the region under 

the curve for a defined distribution, according to limitations 
imposed by the test statistic. The findings indicated that the 
ANN ratio is 0.046, less than one, from 2011 to 2020. This 
result showed that the research area's landslide points are 
clustered.

Additionally, the z-score is − 84.021, which is smaller 
than the value of − 2.58. At the 0.01 significance mark, 
this finding showed that landslide disasters considered in 
this study were clustered spatially. Similarly, the ANN and 
z-score for all years are calculated, and observed landslide 
disasters are grouped around a 0.01 level of significance 
(Table 4). Guthrie and Evans (2004) and Qiu et al. (2019a, 
b) have similar results of landslide-clustering phenomena 
using nearest neighbour analysis.

Kernel density

Landslide intensity, or spatial density, refers to the number of 
landslides in a given area. Using kernel density estimation, 
we developed a map of landslide intensity based on Eqs. (7) 
and (8) (Fig. 8). The findings indicated that landslide dis-
aster distribution was highly clustered and heterogeneous. 

Fig. 7   Spatial patterns of 
landslide disasters in Nepal 
(2011–2020)
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Results from kernel density analysis are in accordance with 
the earlier findings on ANN. Numerous landslide disasters 
occurred in evident concentrated areas. On the other hand, 
there were a few landslide disasters in places that were not 
prone to landslides. Most of these happened in the central-
east portion, with just a handful occurring in the northwest 
portion. Landslide occurrences declined steadily from the 
country's central-east and northwest regions.

Power‑law relation

Landslides registered in a single day (NL) acted as a proxy 
for the number of landslides over time. Between 2011 
and 2020, Nepal experienced 758 days with an average of 
1 ≤ NL ≤ 47 landslide disasters per day. Numerous days in 
this time series contain 0 values, indicating no landslides. 
Single landslide-occurring days made up about 52.63% of all 
landslide event days. We plotted the cumulative frequency 
distribution of regular landslides on log–log axes. As shown 
in Fig. 9a, the cumulative distribution shrank dramatically as 
the number of landslide disasters every day. The cumulative 
frequency distribution of regular landslides in Nepal is best 
represented by the following inverse power law function, as 
seen in Eq. (14).

Rossi et al. (2010) and Qiu et al. (2019a, b) also dem-
onstrate that the cumulative frequency of landslides each 
day is distributed as a power-law with some negative 
scaling component. Moreover, landslide recurrence can 
be determined using time interval regression (Qiu et al. 
2019a, b). As a result, we examined the time intervals 

(14)FC = 95.49N−1.81
L

(
R2 = 0.974

)

Table 4   Summary of average nearest neighbour (ANN) analysis for 
landslide disasters (2011–2020)

S. No. Year ANN ratio z-score

1 2011 0.437 − 12.081
2 2012 0.578 − 8.156
3 2013 0.502 − 9.382
4 2014 0.545 − 7.532
5 2015 0.673 − 4.932
6 2016 0.436 − 16.493
7 2017 0.559 − 10.761
8 2018 0.445 − 19.009
9 2019 0.363 − 25.831
10 2020 0.351 − 27.559
11 2011–2020 0.046 − 84.021

Fig. 8   Mapping of landslide intensity using kernel density analysis 
(2011–2020)

Fig. 9   Power law relationship between a FC and NL b P and T
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between landslide disaster occurrences. The time inter-
val between landslide disaster events was between 1 and 
170 days. This result showed that the landslide disasters 
occurred regularly in the sample area, with an average 
of approximately 5 days between occurrences. A one-day 
time interval accounted for 57.19% of all periods between 
landslide disasters. This suggests that the frequency and 
non-random distribution of landslide occurrences occurred 
throughout time. The results (Fig. 9b) showed a strong 
power-law relation of the probability density (P) with the 
time differences between landslide disasters (T), as shown 
in Eq. (15):

Many researchers (like Guzzetti et al. (2005), Blender 
et al. (2008), and Witt et al. (2010)) have presented that 
the probability distribution of time differences series fol-
lows Poisson, binomial, Weibull, and exponential distribu-
tions. However, the time series distribution of this study 
area resembled a power-law function, as coherent with the 
findings by (Qiu et al. 2019a, b) proposed for the Qinba 
Mountains in China.

(15)P = 0.089 T−1.05
(
R2 = 0.731

)

Trend analysis

Sen's slope method

For the current study, trend analysis of landslides in Nepal 
was done for ten years of time series data (2011–2020) on a 
seasonal and annual basis. It is evident from Fig. 10 that the 
maximum landslide events occurred in summer. It has also 
been observed that landslides during winter were lower than 
in all other seasons. Values of β for spring, summer, autumn, 
and winter were obtained as 2, 35, 6, and 0.5, respectively, 
revealing a positive (increasing) trend. The top increasing 
trend has been shown in summer season data, whereas the 
minimum was found in winter. The annual trend analysis of 
landslides is shown in Fig. 11. It has also shown an increas-
ing trend of landslide occurrence with increasing time, as 
consistent with reporting by (Petley et al. 2007).

Mann–Kendall method

When MK-test findings in Table 5 are analyzed, it is clear 
that all seasonal and annual trends exhibit an increasing pat-
tern, with a z-value greater than 0. Additionally, the autumn 

Fig. 10   Seasonal landslides trend analysis (2011–2020) a spring, b summer, c autumn, and d winter
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season has a z-value marginally more than 1.96, i.e., the pat-
tern in the time series is significant at the 0.05 mark. Thus, 
this finding agrees with the results from Sen's slope analysis. 
It is interesting to note that, with a strong coherence to the 
findings of this study, Petley et al. (2007) and Froude and 
Petley (2018) speculate that an increase in monsoon rains 
over central Nepal may at least be partially responsible for 
an overall increase in landslides in the country.

Conclusions

The study of spatio-temporal distributions of landslides 
disaster is becoming instrumental for understanding land-
slide hazards and risk, land use planning and sustainable 
development activities. The spatio-temporal distribution and 
trend in landslide disaster occurrence from 2011 to 2020 
were analyzed for Nepal. The major conclusions drawn are 
as follows:

•	 Nepal is experiencing an increase in landslide disasters. 
Landslide density was 0.85 events/1000 km2 in 2011 and 
reached 3.34 events/1000 km2 in 2020, with an average 
increasing rate of 0.25 events/1000 km2/year.

•	 The spatial variation of landslide disasters varies greatly 
between provinces and geological areas. The probability 
of each person suffering landslide disasters is highest in 
Gandaki province, followed by Karnali and Koshi Prov-
ince, and minimum in Madhesh Province. The Lesser 
Himalaya Zone was highly vulnerable to landslide disas-
ters due to its geographical formations, steep slopes, rain-
fall intensity, and non-engineered development activities.

•	 Rainfall mainly controls the monthly distribution of 
landslide disasters. A strong correlation between land-
slide occurrence and the monsoon (rain season) has 
been observed. The results showed that about 93.26% 
of landslide disasters (1978 events) occurred during the 
monsoon in Nepal.

•	 After 2015, there is a dramatic increase in landslide dis-
asters, attributed to the Mw 7.8 Gorkha earthquake in 
Nepal. Landslide disaster rates remain elevated in sev-
eral provinces several years after the earthquake. The 
earthquake mainly triggered landslides in the central east 
areas. Landslide disasters in the 14 worst-affected dis-
tricts remains significantly higher than on the day of the 
earthquake in 2015.

•	 Our analysis illustrates that the nature of landslide dis-
asters has significantly changed since the 2015 Gorkha 
earthquake. The sequential mapping demonstrates that 
the location of landslide activity has shifted systemati-
cally over time to the earthquake devasted areas. More 
details analysis is required to investigate the effect of 
earthquake preconditional on spatio-temporal variation 
of landslides disaster.

•	 During the study period, Nepal experienced 758 days 
with an average of 1 ≤ NL ≤ 47 landslide disasters per day, 
with a single landslide event accounting for 52.63% of all 
days of landslide events.

•	 In the context of Nepal, the data indicates that the prob-
ability density (P) exhibits a significant power-law rela-
tionship with the time interval between landslide disaster 
occurrences (T), which can be used to measure and fore-
cast the possibility of landslide disasters.

•	 Trend analysis has revealed the positive (increasing) 
trend of landslide occurrence. With maximum posi-
tive Sen's slope value, the summer season shows the 
maximum number of landslide events and a maximum 
increasing trend.

Fig. 11   Annual trend analysis of landslides (2011–2020)

Table 5   Seasonal trend analysis 
results for Mann–Kendall test

S. N Mann–Kendall test parameters Spring Summer Autumn Winter Annual

1 Mk test statistics (s) 9 14 23 20 10
2 Var (s) 91 92 125 119.33 92
3 z 0.84 1.36 1.97 1.74 0.94
4 Trend at 0.05 significant level No No Positive No No
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With increasing development activities and climate 
change effects in Nepal, landslide disasters continue to 
increase and affect people's lives and property. Therefore, 
the Nepal government should formulate the required policies 
and take immediate actions to reduce the landslide disasters 
in Nepal. Statistical study like this is helpful for policymak-
ers, planners, and engineers engaged in landslide disaster 
management in Nepal.
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